澳门金莎娱乐官网,澳门皇冠金沙网站

  •  学术报告

关于举行云南大学郑喜印教授学术报告的通知

澳门金莎娱乐官网:2020-09-08文章来源:澳门金莎娱乐官网浏览次数:10

报告题目:Perturbation Analysis of metric subregularity for multifunctions

报  告  人:郑喜印  教授(云南大学)

报告时间:2020912 日(星期六)上午9:30-10:30                

报告地点:腾讯会议,会议号519902513

邀  请  人:潘少华  教授

欢迎广大师生前往!

澳门金莎娱乐官网

202098

报告摘要:

Considering a closed multifunction Ψ between two Banach spaces, it is known that metric regularity and strong metric subregularity of Ψ are respectively stable with respect to “small Lipschitz perturbations” and “small calm perturbations” but the corresponding results are not longer true for metric subregularity of Ψ. This paper further deals with the stability issues of metric subregularity with respect to these two kinds of perturbations. We prove that either metric regularity or strong metric subregularity of Ψ at ( x, y) is su?cient for the stability of metric subregularity of Ψ at (x, y) with respect to small calm subsmooth perturbations and that, under the convexity assumption on Ψ, it is also necessary for the stability of metric subregularity of Ψ at (x, y) with respect to small calm subsmooth (or Lipschitz) perturbations. Moreover, in terms of the coderivative of Ψ, we provide some su?cient and necessary conditions for metric subregularity of Ψ to be stable with respect to small calm perturbations. Some results obtained in this paper improve and generalize the corresponding results for error bounds in the literature.

 

报告人简介:

郑喜印,云南大学特聘教授、博士生导师。1999年后,每年都应邀前往香港中文大学、香港理工大学或台湾中山大学作学术访问。主要从事变分分析、非光滑优化理论以及向量优化理论的交叉研究,与海外合作者共同建立了无穷维空间中关于一般闭集的统一分离性定理和投影定理,把空间几何和凸优化中的一些结果推广到非凸情形;给出了次光滑广义方程有度量次正则性的特征定理,并在解集无界的复杂情况下建立了凸广义方程的一整体误差界定理, 一些定理限制在特殊情况回答了本邻域关于误差界的开问题和猜想;研究了非光滑半无穷优化问题weak sharp minima解的优化条件;建立了逐段线性向量优化问题解集的结构理论, 补充和发展了Arrow等关于线性向量优化问题的对应理论。发表SCI论文70余篇,其中有30余篇发表在SIAM Journal on OptimizationMathematical ProgrammingMathematics of  Operation Research这三份优秀的国际优化刊物。主持国家自然科学基金项目5, 获云南省自然科学奖一等奖一项和二等奖二项(均排名第一).


XML 地图 | Sitemap 地图